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Abstract— This work analyzes the application Bayesian neural network for predicting Smear Negative Pul-
monary Tuberculosis (SNPT). The data used for developing the proposed model comprised of one hundred and
thirty-six patients from Health Care Units. They were referred to the University Hospital in Rio de Janeiro,
Brazil, from March 2001 to September 2002, with clinical-radiological suspicion of smear negative pulmonary tu-
berculosis. Only symptoms and physical signs were used for constructing the Bayesian neural network modelling,
which was able to correctly classify 82% of patients from a test sample.
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Resumo— Este trabalho analisa a aplicação de rede neural Bayesiana para predizer o diagnóstico de tuber-
culose pulmonar paucibacilar. Os dados utilizados para desenvolvimento do modelo neural referem-se ao estudo
de pacientes atendidos no Hospital Universitário Clementino Fraga Filho da Universidade Federal do Rio de
Janeiro, que apresentaram suspeita de TB pulmonar e com resultado de baciloscopia negativa, no peŕıodo de
março de 2001 a setembro de 2002. Apenas sintomas e sinais f́ısicos foram usados para construção da rede neural
Bayesiana, a qual foi capaz de classificar corretamente 82% dos pacientes da amostra de teste.

Palavras-chave— Redes Neurais Artificiais, Aprendizado Bayesiano, Método Monte Carlo via Cadeia de
Markov, Diagnóstico Médico.

1 Introduction

During the last years, the application of artificial
neural networks (ANN) for prognostic and diag-
nostic classification in clinical medicine has at-
tracted growing interest in the medical literature
(Edwards et al., 1999; El-Solh et al., 1999; Tu,
1996).

(Santos, 2003) uses neural networks and clas-
sification trees to identify patients with clinical-
radiological suspicion of smear negative pulmo-
nary tuberculosis. (Kiyan and Yildirim, 2003)
employed radial basis function, general regression
neural network and probabilistic neural network
in order to breast cancer diagnosis. This work
also indicates that statistical neural networks can
be effectively used for breast cancer diagnosis to
help oncologists.

An attractive feature of ANN is their abi-
lity to model highly complex non-linear relati-
onships in data (Bishop, 1996). Recently, Baye-
sian methods have been proposed for neural
networks to solve regression and classification pro-
blems (Lampinen and Vehtari, 2001). These
methods claim to overcome some difficulties en-
countered in the standard approach such as over-
fitting.

The Bayesian neural networks (BNN) can pro-

vide us not only the means of predictive weights
but also their uncertainties. Another advantage
of BNN is the appropriate choices of a number
of hidden layers and their dimensions (Rios Insua
and Müller, 1998).

In this work, we use Bayesian neural networks
for developing and evaluating a prediction model
for diagnosing SNPT, useful for patients attended
in Health Care Units within areas of limited re-
sources. In addition, we analyze the information
that is extracted by the model and compare it to
expert analysis for diagnosis. This analysis aims
at helping doctors to understand the way the mo-
del works and to make them more confident in its
practical application.

2 Bayesian Neural Networks

In this paper, we focus exclusively on feedforward
networks with a single hidden layer with m nodes
and k outputs, besides do not allow direct connec-
tions from the inputs and outputs. The particular
form of the neural model we will work is

fk(x,w) = φk{wk0 +

mX
j=1

wkjφj(wj0 +

pX
i=1

wijxi)}

(1)



where x is the input vector with p explanatory
variables, xi and φ represents the activation func-
tion and the set of all weights (parameters), re-
presented by the vector w, including input-hidden
weights, biases and hidden-output weights. If the
neural model is used for classification problem, the
output fk(x,w) is the final value used for classifi-
cation process.

In the Bayesian approach to learning neu-
ral network (Buntine and Weigend, 1991; Mac-
kay, 1991; Mackay, 1992), the objective is to find
the weights posterior distribution mode. To ob-
tain the posterior distribution of the weights, we
need to specify the prior distribution, which is a
probability distribution that represents the prior
information associated with the weights of the
network, and the data likelihood. Firstly, we will
discuss how we choose the prior distribution of the
weights.

2.1 Prior Distribution for Neural Networks

Many implementations of Bayesian neural
networks use Gaussian distribution, with zero
mean and some specified width, as the priors for
all weights and biases in the network. To specify
the prior distributions, the weights were divided
into three separate groups: bias terms, input to
hidden weights and hidden to output weights.

We consider a Gaussian prior with zero mean
and unknown variance 1/λα for the input to hid-
den weights, where λα is a precision parameter.
Instead of fixing the λα value, we regard it as
another parameter. We would then call it a hyper-
parameter to separate it from weights and biases.
Now, we need to specify a hyperprior distribution
for λα.

Although there are several ways to implement
the required hyperprior, we choose a Gamma hy-
perprior, with mean and specified shape parame-
ter (Berger, 1985). This process can be exten-
ded, where each input weight have different priors
and hyperpriors. This process is called Automa-
tic Relevance Determination (ARD) (Neal, 1996).
Using this prior distribution, it is possible deter-
mine the relative importance of the different in-
puts. The relevance of each input is considered to
be inversely proportional to the variance of this
distribution.

In order, the prior distribution for hidden to
output weights was also considered Gaussian with
zero mean and unknown variance λβ . We use
Gamma hyperprior with mean and specified shape
to hyperparameter λβ .

Finally, all biases terms are then assumed to
be distributed according to a gaussian prior with
mean zero and variance λγ , where the Gamma
hyperprior, with mean and specified shape, was
again used to the hyperparameter ηγ . To facilitate
the notation, let’s denote a set of hyperparameters

ϕ = (λα, λβ , λγ).
Once we have chosen the prior distributions,

we combine the evidence from the data to get the
posterior distribution for the parameters and hy-
perparameters.

2.2 Likelihood Function and Posterior Distribu-
tion

We assume that we have a data set consisting of
n input vectors xi, . . . ,xn and the corresponding
target yi. For classification problems with two
classes, it is known that under conditions the out-
put fk(x,w) can be interpreted as the probability
that a target yi belongs to a certain class. For
the specific problem at hand, the BNN is used to
find the probability of the patient is with active
pulmonary tuberculosis (PT).

Assuming that (x1,y1), . . . , (xn,yn) are inde-
pendents and identically distributed according to
Bernoulli distribution, we have the following like-
lihood function for the training data

P (D | w) =
n∏

i=1

fk(xi,w)yi [1− fk(xi,w)]1−yi (2)

After observing the data, using Bayes theorem
and likelihood, prior distribution is updated to the
posterior distribution

P (w, ϕ | D) =
P (D | w, ϕ)P(w, ϕ)

P (D)

=
P (D | w, ϕ)P(w | ϕ)P(ϕ)R R

P (D | w, ϕ)P(w, ϕ)dwdϕ

(3)

The denominator in the Equation 3 is someti-
mes called normalizing constant that ensures that
the posterior distribution integral is equal to one.
This constant can be ignored since it is irrelevant
to the first level of inference. Therefore, the theo-
rem may also be written as

P (w, ϕ | D) ∝ P (D | w, ϕ)P(w | ϕ)P(ϕ) (4)

Given a training data, to find the weight vec-
tor w∗, corresponding to the maximum of the pos-
terior distribution, is equivalent to minimize the
error-function E(w), which is given by

E(w) = − lnP(D | w) + lnP(w, ϕ) (5)

where P (D | w) is the likelihood function presen-
ted in Equation 2.

In the Bayesian learning, the posterior distri-
bution is used to find the predictive distributions
for the target values in the new test case given the
inputs for that case as well as inputs and target for
training cases (Ghosh et al., 2004). To predict the
new output yn+1 for new input xn+1, predictive



distribution is obtained by integrating the predic-
tions of the model with respect to the posterior
distribution of the model parameters

P (y(n+1) | x(n+1),D) =∫ ∫
P (y(n+1) | x(n+1),w, ϕ)P(w, ϕ | D)dwdϕ

(6)

The posterior distribution presented in Equa-
tion 4 is very complex and its evaluation requi-
res high-dimensional numerical integration, then
it is impossible to compute it exactly. In order, to
make this integral analytically tractable, we need
to introduce some simplifying approximations.

2.3 Markov Chain Monte Carlo Methods

There are different approaches to calculate the
posterior distribution. In (Mackay, 1992) is used
a Gaussian approximation for the posterior dis-
tribution, while in (Neal, 1996) is introduced
a hybrid Monte Carlo method. Another ap-
proach to approximate the posterior distribu-
tion uses Markov Chain Monte Carlo method
(MCMC) (Rios Insua and Müller, 1998). For a
review of these methods see, for instance (Bishop,
1996).

The idea of MCMC is to draw a sample of
values w(t), t = 1, . . . , M from the posterior dis-
tribution of network parameters. In this work, we
used Gibbs sampling (Geman and Geman, 1984)
to generate samples to the posterior distribution.

Gibbs sampling is perhaps the simplest
MCMC method and it is applicable when the
joint distribution is not known explicitly, but the
full conditional distribution of each parameter is
known. In a single iteration, Gibbs sampling in-
volves sampling one parameter from full conditio-
nal distribution given all other parameters.

Gibbs sampling requires that all conditional
distributions of the target distribution can be sam-
pled exactly. When the full conditional distribu-
tion was unknown, it was used the Metropolis-
Hasting algorithm (Hastings, 1970) or adaptive
sampling procedure (Gilks and Wild, 1992). For
more details of this method, see (Gamerman,
1997).

We can observe that the integral of Equation 6
is the expectation of function fk(x(n+1),w) with
respect to the posterior distribution of the para-
meters. This expectation can be approximated by
MCMC, using a sample of values w(t) drawn from
the posterior distribution of parameters. These
values are then used to calculate

y(n+1) ≈
1
M

M∑
t=1

fk(x(n+1),w(t)) (7)

3 Methodology

3.1 Data Set

The data set refers to one hundred and thirty-six
patients, who agreed to participate in the study.
They were referred to Hospital Clementino Fraga
Filho, a University Hospital of Federal Univer-
sity of Rio de Janeiro, Brazil, from March, 2001
to September, 2002, with clinical-radiological sus-
picion of SNPT. The data consisted of informa-
tion from anamnesis interview and included de-
mographic and risk factors typically known for tu-
berculosis diagnosis.

These patients were under suspicion of ac-
tive pulmonary tuberculosis, presenting negative
smear. Forty three per cent of these patients ac-
tually showed PT in activity.

Twelve clinical variables were considered for
model development. These included: age, cough,
sputum, sweat, fever, weight loss, chest pain,
shudder, alcoholism and others.

To obtain the training and testing sets, the
original data were randomly divided into the trai-
ning and testing sets. Given the statistical limi-
tations of the available data, a division in the
form of 80% of the patients for the training set
and 20% for the testing set would be preferable.
With this strategy, model development was made
varying the number of hidden neurons. It was ob-
served that some neural networks exhibited poor
performance. This is due to poor statistical repre-
sentation of training set with respect to patterns
belonging to testing set (Santos et al., 2006).

To avoid the possibility of some regions not
represented, training and testing sets were also
obtained data clustering. Efficient alternative for
data selection is cluster analysis (Morrison, 1990).
This technique permits to detect the existence of
clusters in given data. This grouping process can
be seen as an unsupervised learning technique.

The clustering method under investigation
pointed out three clusters in the data set. In this
case, the training set was obtained by randomly
selecting 75% of the patients in each cluster and
25% of patients was selected to form the testing
set.

3.2 Implementation of BNN

We generated a BNN with 12 inputs, a single-layer
feedforward with a fixed number m of hidden no-
des and one output node. The nonlinear activa-
tion function used for the hidden units and output
units was the logistic sigmoid, which produces an
output between 0 and 1.

We used the Gaussian prior distribution as
described in Section 2, with three separate weight-



groups. The prior over network parameters are

ui | λα ∼ N(0, λ−1
α ), i = 1, . . . , I.

vj | λβ ∼ N(0, λ−1
β ), j = 1, . . . ,H.

bk | λγ ∼ N(0, λ−1
γ ), k = 1, . . . , S. (8)

where ui represents the input-hidden weights, vj

the hidden-outputs weights and bk the biases
terms.

A convenient form for the hyperprior distri-
butions is vague Gamma distribution. Here, we
considered all hyperparameters distributed accor-
ding Gamma distribution with the scale and shape
parameter equal to 0.001. The priors for different
parameters and hyperparameters are all indepen-
dent.

The software WinBUGS (Spiegelhalter et al.,
2003) was used to implement the Bayesian neural
network. Through WinBUGS, we specified the
model described in Section 2. Next, the software
simulated the posterior distribution values for
each parameter of interest, using the Metropolis-
within-Gibbs procedure. We computed a single
chain of a MCMC sampler in WinBUGS for each
parameter of interest (weights and bias). We si-
mulate 20000 iterations, and discarded the 10000
first in each sequence. The experiment was con-
figured with 102 training samples and 34 samples
for tests.

The posterior distribution samples for the mo-
del parameters were used to estimate the predic-
tive distribution for the new test inputs. For each
iteration t, the BNN has parameters w(t) and pro-
duces an output y(t) , for an input vector x . Thus,
for each test sample, we calculate the arithme-
tic mean of the M network outputs, according to
Equation 7.

Several feedforward neural networks also were
tested. The networks have log-sigmoid activa-
tion functions, one output neuron and one hidden
layer, with the optimum number of hidden neu-
rons found empirically. Alternative parameters
were used (learning rate, momentum and number
of iterations) of the backpropagation algorithm.

The performance of the BNN and ANN was
evaluated through the classification for the testing
set, which is referred to here as accuracy. Other
descriptive statistics were also used to evaluate
the performance of neural networks in study, they
are: sensitivity and specificity, since those measu-
red are of general use in the medicine. Sensitivity
of the neural model will tell us how the model is
classifying the patients with PT in activity, while
the specificity will tell how the model is classifying
patients without PT in activity.

4 Results

Bayesian neural networks with 2, 3, 4 and 5 hidden
neurons were tested and we report just the best

one, that was obtained with two hidden neurons.
The results of BNN are comparable to those

of artificial neural network with four hidden neu-
rons. This network was selected because it has the
smallest classification errors in the test set.

According to Table 1, the BNN with presented
the largest accuracy (82%), as well as the largest
specificity (85%). However, the ANN possesses
the largest sensitivity (100%), i.e., this network
better classifies the individuals with active PT.

Tabela 1: Classification efficiencies
ANN BNN

Accuracy 76% 82%
Specificity 60% 85%
Sensitivity 100% 79%

5 Conclusion

The present study has applied Bayesian neural
network to predict medical diagnosis. The Baye-
sian neural network model achieved good classi-
fication performance, exhibiting sensitivity from
79% and specificity from 85%.

It is known that parsimonious models with
few hidden neurons are preferable, because they
tend to show a better generalization ability, redu-
cing the overfitting problem. Although, the ANN
possesses the largest sensitivity, this network has
more hidden neurons, and it is not good when the
amount of available data is small.

Many issues remain to be explored. For exam-
ple, we should try other prior distributions and to
treat the number hidden neurons as an additional
parameter.
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